Wheatland Union High School District

Chemical Hygiene Program

Laboratory Safety
Wheatland Union High School District
Chemical Hygiene Program (Laboratory Safety)
Written Plan

Chemical Hygiene Program (Laboratory Safety)

1.0 INTRODUCTION

2.0 DEFINITIONS

3.0 RESPONSIBILITIES

3.1 School Chemical Hygiene Officer (CHO)
3.2 Laboratory/Science Teachers
3.3 All Employees

4.0 DETAILS AND PROCEDURES

4.1 Chemical Procurement, Distribution, and Storage
4.2 Personal Protective Equipment
4.3 Safety Equipment (Engineering Controls)
4.4 Signs and Labels
4.5 Spills, Exposures and Accidents (Emergency Response Procedures)
4.6 Environmental Monitoring
4.7 Waste Disposal
4.8 Housekeeping, Maintenance and Inspections
4.9 Student Laboratory Safety Contract

5.0 TRAINING

6.0 RECORDKEEPING

1.0 INTRODUCTION

Wheatland Union High School District is fully committed to the health and safety of all faculty, staff, students and visitors. The district believes that occupant safety and a healthy environment are important factors in the functioning of the total educational program, making the district schools a better place to learn and work, creating positive relationships with the district customers and stakeholders, and preparing students to be responsible citizens and to work safely in the community.

To help meet this commitment, the district has developed and implemented this Chemical Hygiene Program and associated Chemical Safety and Use Procedures, to ensure the safety of employees and students whose work involves the laboratory use of hazardous chemicals. It sets forth procedures and practices for both employees/students who work with hazardous chemicals and for those whose responsibilities include the supervision of such work.

This program also serves to meet the requirements of OSHA Regulation 29 CFR 1910.1450, Occupational Exposure to Hazardous Chemicals in Laboratories (commonly known as the OSHA Lab Safety Standard).
2.0 DEFINITIONS

Chemical Hygiene Officer
An employee who is designated by the employer and who is qualified by training or experience to provide technical guidance in the development and implementation of the provisions of the Chemical Hygiene Program.

Hazardous Chemical
A chemical for which there is statistically significant evidence based on at least one study conducted in accordance with established scientific principles that acute or chronic health effects may occur in exposed employees. The term "health hazard" includes chemicals which are carcinogens, toxic or highly toxic agents, reproductive toxins, irritants, corrosives, sensitizers, hepatotoxins, nephrotoxins, neurotoxins, agents which act on the hematopoietic systems, and agents which damage the lungs, skin, eyes, or mucous membranes.

Hazardous Waste
Any solid, liquid or contained gaseous material that is to be discarded that, because of its hazard to health and the environment, cannot be disposed of by placing in the trash or pouring down a drain. Disposal of hazardous wastes is governed by EPA regulations and Federal law.

Laboratory
A facility where the "laboratory use of hazardous chemicals" occurs. It is a workplace where relatively small quantities of hazardous chemicals are used on a non-production basis.

3.0 RESPONSIBILITIES

3.1 School Chemical Hygiene Officer (CHO)
Each district school involved in the laboratory use of hazardous chemicals is responsible for the adaptation and implementation of the district’s Chemical Hygiene Program within the laboratories under its administrative control. Each school must designate a Chemical Hygiene Officer (CHO) who will be specifically responsible for this effort (see “Chemical Hygiene Officer Assignment” form). The CHO is required to assist each laboratory teacher/supervisor in adapting the District’s Chemical Hygiene Program to the needs of individual laboratories, including but not limited to:

- Work with administrators and other employees to develop and implement appropriate chemical hygiene policies and practices.
- Monitor procurement, use, and disposal of chemicals used in the lab.
- See that appropriate audits are maintained.
- Providing or ensuring laboratory employee training,
- Help science teachers develop precautions and adequate facilities.
- Know the current regulations.
- Seek ways to improve the chemical hygiene program.
3.2 Laboratory/Science Teachers

Laboratory/science teachers and the immediate supervisors of laboratory employees and students are responsible for coordinating with the school CHO to adapt and implement the policies and procedures of the Chemical Hygiene Program. This includes:

- Developing written standard operating procedures for chemical safety and use.
- Reporting hazardous conditions to the school CHO.
- Maintaining adequate records to demonstrate compliance with all aspects of the Chemical Hygiene Program.
- Ensuring that employees and students know and follow the chemical hygiene rules, that protective equipment is available and in working order, and that appropriate training has been provided.
- Providing regular, formal chemical hygiene and housekeeping inspections including routine inspections of emergency equipment.
- Determining the required levels of protective apparel and equipment.
- Ensuring that facilities and training for use of any material being ordered are adequate.

3.3 All Employees

Employees are responsible for observing all appropriate practices and procedures contained in the Chemical Hygiene Program as well as other general safety practices, for attending designated training sessions, and for reporting hazardous or unsafe conditions.

4.0 DETAILS AND PROCEDURES

4.1 Chemical Procurement, Distribution, and Storage

Ordering Chemicals

- Estimate the amount of each chemical required by carefully pre-planning the experimental procedure.
- Select only those chemicals for which adequate ventilation is available.
- Obtain approval from the lab supervisor before ordering whenever:
 - a new laboratory procedure or significant change in a previous procedure is to be conducted.
 - it is likely that an OSHA Permissible Exposure Limit (PEL) or other hazard limit could be exceeded during the course of the procedure.
- When laboratory personnel are not familiar with a chemical, obtain and review hazard information prior to placing an order. Read the MSDS or talk with a chemical specialist by calling 1-866-school-0.
- Order chemicals in small container lots to avoid the hazards associated with repackaging.
- Notify storeroom personnel that the material has been ordered (if the storeroom will be the location of receipt).
Transmit proper handling information to all those who will be involved with the chemical (for most chemicals, this information can be found on the MSDS).

Prepare the laboratory for the arrival of the substance (e.g., establish storage location, post appropriate signs, obtain and check personal protective equipment).

Receipt and Distribution of Chemicals
- Do not accept any chemical whose container is not properly labeled.
- Review and observe information on the safe handling and storage of the chemical.
- Place all chemical containers which are to be delivered by hand within shock-resistant carriers, containers or buckets.
- When transporting chemicals by cart, ensure that the cart is stable under the load and has wheels large enough to negotiate uneven surfaces such as expansion joints and drainage depressions without tipping or stopping suddenly.
- Whenever possible, transport chemicals on freight-only elevators to avoid potential exposure to passengers.
- When transporting gas cylinders, use an appropriate hand truck (never drag or roll cylinder), leave valve cover cap on until cylinder is in place, and handle only one cylinder at a time.

Safe Storage of Chemicals
The proper storage of chemicals is a highly complicated subject due to the diverse individual physical properties of the numerous chemicals which may be present in the laboratory. Some general procedures for chemical storage are listed below. These procedures are not intended to be all-inclusive but should serve instead to supplement more specific procedures adopted for particular laboratory situations. Specific instructions on chemical storage may be obtained from the MSDS, container label, and by contacting 1-866-school-0.

- Do not store chemicals alphabetically in the storeroom or storage cabinets.
- Store incompatible chemicals separately.
- Segregate chemicals by hazard class (e.g., flammable liquids, organic acids, oxidizers, etc.).
- Do not store acetic acid and nitric acid together.
- Store highly reactive or corrosive liquids in spill trays.
- Secure all storage shelves and cabinets to prevent tipping.
- Ensure that storage locations are dry and adequately vented.
- Do not store liquid chemicals above eye level.
- Ensure all containers are in good condition and properly labeled (including the purchase date).
- Store flammable liquids in safety cans where quantities exceed 4 liters.
- Store flammable liquids in approved safety cabinets where the quantities in a single laboratory exceed 40 liters.
- Use only explosion-proof refrigerators and freezers for storage of flammable liquids.
- Indicate the date of purchase and the date of opening on each container of peroxide forming chemicals.
- Dispose of all peroxide forming chemicals within one year of purchase or six months of opening.
- Secure gas cylinders away from heat sources.
4.2 Personal Protective Equipment

Personal protective equipment (PPE) is personal apparel which includes, but is not limited to the following: hard hats; plain and prescription safety glasses; goggles; welders helmets or similar head protection; safety shields; safety shoes; protective clothing such as aprons, gloves, lab coats; respirators; hearing protection; etc. These protective apparel items should be compatible with the required degree of protection for the chemicals being handled.

The laboratory teacher is responsible for coordinating and overseeing the use of any PPE items after consultation with the Chemical Hygiene Officer. Following are short explanations of some typical PPE items.

Respirators

In certain situations where engineering controls (i.e., fume hoods) cannot effectively control the amount of chemical air contaminants within the work environment, personnel may be required to wear respiratory protective equipment. Personnel designated to use respiratory equipment (including disposable dust masks) must first have appropriate medical exams and approvals, fit tests and training.

Eye and Face Protection

Eye and face protection is required where there is reasonable probability that injury could result without it. Any PPE designated for eye and face protection should meet the requirements listed in ANSI Z87.1 and appropriate OSHA regulations. General eye and face protective requirements include the following:

- Safety goggles are required in chemical operations where there is potential for chemical fumes, splashes, mists, sprays or dust exposure to the eyes.
- Safety glasses with permanent side shields are required in any operation where there is potential for eye exposure to projectiles.
- Face shields are required where there is potential face exposure to projectiles or chemicals. Face shields should not be used as a substitute for eye protection. Under certain circumstances it may be necessary to use both safety glasses/goggles and a face shield.

Hand and Body Protection

Skin contact is a potential source of exposure to chemicals. Therefore, necessary precautions must be taken to protect the skin when working with chemicals that can cause a significant exposure through skin contact. Appropriate gloves, lab coats, etc., should be selected to meet the needs of the specific chemical work environment. General requirements include the following:

- Lab coats should be worn by personnel in any area where chemicals are routinely used or stored. Lab coats should be laundered frequently and removed immediately if contaminated with hazardous chemicals.
- Gloves should be worn whenever there is potential for contact with corrosive or toxic materials. Glove materials must be chosen with the specific chemical use in mind (type of material, thickness, permeation rate, etc.). Gloves should be washed appropriately before removal and inspected periodically for wear and effectiveness.
- Other protective items (i.e., rubber aprons, rubber suits, coveralls, etc.) should be specified and used depending on the specific chemicals involved and the work environment. Laboratory teachers and chemical hygiene officers should be involved in this decision-making process.
Foot Protection
The requirement and need for safety shoes and other foot protection in a chemistry lab is a judgmental process and can only be made after careful review of the chemicals and work operations involved. This should be conducted by the lab teacher with assistance from the chemical hygiene officer, if necessary.

However, it is mandatory that solid, non-perforated shoes be worn at all times by personnel who work in laboratories where chemical exposures are possible. Bare feet, sandals and open-toed shoes are not permitted in chemical labs.

4.3 Safety Equipment (Engineering Controls)

Fume Hoods / Safety Shields
Fume hoods with drawn sashes, glove boxes, face shields or other devices should be employed whenever procedures with a high potential for sudden splattering (e.g., those involving concentrated acids, bases, oxidizers or reducing agents) are involved. Chemicals which react explosively require special safety shields and/or containment.

Criteria for Use
A fume hood should be employed for any chemical procedure which has the potential of creating:

- Airborne concentrations of one or more chemicals approaching the corresponding Occupational Safety & Health Administration (OSHA) Permissible Exposure Limit (PEL).
- Flammable vapors approaching one tenth of the lower explosion limit.
- Materials of unknown toxicity.
- Odors which are potentially annoying to other personnel.

Procedures Not Requiring Fume Hoods
Procedures which can generally be conducted safely outside the fume hood include those involving:

- Water-based solutions of salts, dilute acids, bases or other reagents.
- Very low volatility liquids or solids.
- Closed systems which do not allow significant escape to the laboratory environment.

Safety Showers
An easily accessible, drench-type safety shower shall be available within 100 feet or 10 seconds travel time of each area where corrosives or flammable liquids are used or stored.

Eyewash Fountains
An eyewash fountain shall be available in all areas where corrosives, hot liquids, or other eye irritating materials (e.g., formaldehyde) are used or stored.

Fire Extinguishers
Each chemical laboratory shall be provided with a carbon dioxide or dry chemical fire extinguisher (or both). Other types of fire extinguishers should be available if required by the work being performed.
First Aid Kits

Each chemical laboratory should have available a properly stocked first aid kit. First aid kit contents should include items such as Band-Aids, sterile gauze pads, bandages, scissors, antiseptic wipes or ointments, and a first aid card. All kits should also contain examination gloves for response to emergencies in which blood is present. Pocket masks for CPR procedures are also recommended. The following items are not recommended for use in a first aid kit:

- Iodine – tissue damage can be caused by improper use.
- Ice pack compress – if there is swelling of soft tissue, or other need for an ice pack, the person should be examined by a physician.
- Ammonia inhalants – if an individual is unconscious, obtain help. DO NOT USE AMMONIA.
- Tourniquet – not required for minor injuries; use the pressure technique until medical assistance is available.

Laboratory Refrigerators

Flammables which require refrigeration must not be stored in domestic refrigerators. The light switch or thermostat in such refrigerators could ignite flammable vapors causing an explosion. Flammables which require refrigeration must be stored in explosion-proof refrigerators.

4.4 Signs and Labels

Laboratory Entrance Posting

The entrance to each laboratory in which chemicals are used or stored shall be posted with the following:

- Emergency information including the names and phone numbers of the lab supervisor or other responsible party to be contacted in the event of a fire, accident or spill.
- Classification of hazardous materials present in the lab (e.g., flammable, radiological, biological and electrical). Standard signs and symbols (e.g., NFPA 704) have been established for warning of many of these hazards.

Container Labeling

All incoming containers from chemical manufacturers should have proper labels. Employees must ensure that the manufacturer’s labels are not removed or defaced.

Each secondary chemical container (including flasks, beakers, test tubes, carboys, etc.) must be labeled. For further information about container labeling, see the written plan for the district Hazard Communication Program.

4.5 Spills, Exposures and Accidents (Emergency Response Procedures)

Despite strict adherence to laboratory safety practices, spills and accidents involving chemicals will occur in the laboratory. The amount of damage sustained by personnel and property from these accidents will be directly related to the quality of the laboratory’s emergency plan and procedures. The procedures listed below are recommended for each laboratory’s emergency planning.
Preplanning

To be prepared for spills and accidents in the laboratory, the following factors should be considered:

- The nature of the operation (e.g., experimental design, equipment used and type of injury that could occur).
- The potential location of a release or spill (e.g., outdoors versus indoors, in a laboratory, in a corridor or storage area, on a table, in a hood or on the floor).
- The quantities of material that might be released and the type of containment (i.e., compressed gasses, bottles, in pipes, etc.).
- The chemical and physical properties of the material (e.g., its physical state, vapor pressure and air or water reactivity).
- The hazardous properties of the material (its toxicity, corrosivity and flammability).
- The availability and locations of emergency supplies and equipment.
- A contingency plan posted in the lab which identifies building evacuation routes, emergency telephone numbers, chemical containment procedures, fire extinguisher usage, etc.

Equipment and Supplies

Each laboratory in the district should have appropriate equipment and supplies on hand for managing spills and accidents involving chemicals. Equipment should include a safety shower, eyewash, appropriate fire extinguisher(s) and first aid kit. The supplies available should include, but are not limited to various neutralizing agents (such as sodium carbonate and sodium bisulfate) and absorbents (such as vermiculite, calcium bentonite and sand). These and other spill control items are often contained within various commercially available spill control kits. If an individual is injured in a laboratory, non-injured persons should be prepared to:

Accidents Involving Personnel Injury

- Call 911 for medical emergencies.
- Assist persons involved and administer immediate first aid which may include:
 - Washing under a safety shower (in case of burning clothing or chemical exposures).
 - Removing contaminated clothing.
 - Irrigating the eyes at an eyewash.
 - Administering artificial respiration.
 - Notify personnel in adjacent areas of any potential hazards (e.g., activate building or area alarms).
 - Move injured personnel only if necessary to prevent their exposure to further harm.
- Call 1-866-school-0 if you should require assistance or additional information.

Employees shall report all accidents including exposure incidents or symptoms as soon as possible using the district Employee Accident/Exposure Report.

Medical Evaluation

A medical evaluation shall be performed for employees when:

- An employee develops signs or symptoms associated with a hazardous chemical to which the employee may have been exposed in the workplace.
• Exposure monitoring reveals exposure levels routinely above the action level or permissible exposure level for an OSHA regulated substance for which there are exposure monitoring and medical surveillance requirements, medical surveillance shall be established for the affected employee as prescribed by the particular standard.

• An event takes place in the work area such as a spill, leak, explosion or other occurrence resulting in the likelihood of a hazardous exposure, the affected employee shall be provided an opportunity for a medical consultation (consultation shall be for the purpose of determining the need for a medical examination)

Fire and Fire-Related Emergencies

Small isolated fires within the laboratory may be extinguished using the appropriate portable fire extinguisher if lab personnel are confident, they can safely extinguish the fire. For large or rapidly spreading fires, the following procedures should be observed:

- Call 911 to report the fire.
- Activate building and area alarms.
- Evacuate the building, shutting doors and providing assistance to others on the way out.
- Provide fire or police officials with the details of the problem upon their arrival.
- Call 1-866-school-0 if you should require assistance or additional information.

Minor Chemical Spills

The following general procedures should be observed by laboratory personnel for minor spills of chemicals:

- Attend to any persons who may have been contaminated.
- Notify people in the immediate area about the spill.
- Evacuate all nonessential personnel from the spill area.
- If the spilled material is flammable, turn off ignition and heat sources.
- Avoid breathing vapors of the spilled material and, if necessary, use a respirator.
- Maintain or establish the exhaust ventilation if it is safe to do so.
- Secure supplies to effect cleanup. Many necessary supplies are contained in laboratory spill kits. Laboratory spill kits are recommended for all laboratories using chemicals.
- During cleanup, wear appropriate personal protective equipment (PPE) to prevent contamination.
- Call 1-866-school-0 if you should require assistance or additional information.

Major Chemical Spills

In the event of a large chemical release (a volume which exceeds the capacity of a standard cleanup kit) or a situation in which readily available personal protective equipment (PPE) is inadequate to ensure worker safety, the following measures must be followed:

- Dial 911 and report incident.
- Activate fire alarms (or chemical safety alarms if applicable).
- Evacuate the area and secure entrances.
- Call 1-866-school-0 if you should require assistance or additional information.
Chemical Releases to the Environment

If chemicals are spilled outside of buildings or intentionally released to a direct conduit such as a sewer or fume hood:

- Contact 1-866-school-0 to determine if the chemical release is subject to special regulatory reporting requirements.
- Be prepared to provide the name of the chemical(s) involved, quantities released and approximate time of the incident.
- The chemical specialist at 1-866-school-0 can provide information regarding appropriate regulatory agency involvement and reporting if necessary.

Compressed Gas Cylinder Leaks

Occasionally a gas cylinder or one of its component parts will develop a leak. Most of these leaks occur at the top of the cylinder in areas such as the valve threads, pressure safety device, valve stem and valve outlet. Suspected leaks should be verified using a flammable gas detector or soapy water solution (a flame should not be used for detection). If the leak cannot be stopped by tightening a valve gland or packing nut, the supplier should be notified and emergency action procedures initiated. Users of compressed gas cylinders should be familiar with necessary safety precautions. Additional information on the safe usage of cylinders and regulators can be obtained from 1-866-school-0.

Minor Leaks

- For flammable, inert or oxidizing gases, move the cylinder to an isolated, well-ventilated area (e.g., within a fume hood) away from combustible materials. Post signs that describe the hazard.
- For corrosive and toxic gases, move the cylinder to an isolated, well-ventilated area (e.g., within a fume hood) and use suitable means to direct the gas into an appropriate chemical neutralizer. Post signs that describe the hazards.
- If it is necessary to move a leaking cylinder through populated portions of the building, place a plastic bag, rubber shroud or similar device over the top and tape it (duct tape preferred) to the cylinder to confine the leaking gas.

Major Leaks

When the nature of the gas or the size of the leak constitutes a serious hazard, one or more of the following steps may be necessary:

- Call 911 to report the situation.
- Evacuate personnel from the area.
- Observe procedures for personal injury accidents or fire as appropriate.
- Call 1-866-school-0 if you should require assistance or additional information.

Accidents Involving Broken Glass

- All broken glass requires special handling and disposal procedures to prevent injury not only to lab personnel, but members of the janitorial staff as well.
- If a spill involves broken glassware, the glass should never be picked up directly with the hands. It must be cleaned up using mechanical means, such as a brush and dustpan, tongs, or forceps.
- All broken glass shall be disposed of in rigid, puncture proof containers such as a cardboard box with taped seams, or a plastic bucket or metal can with a sealing lid. All broken glass disposal
containers shall be clearly marked "DANGER - BROKEN GLASS." Limit quantities to no more than approximately 15 to 20 pounds so that lifting the container will not cause failure of the container or create a situation that could cause back injury.

- Glassware with chemical contamination: empty the contents of the glassware into a suitable container if safe to do so. (See the "Waste Disposal" section of this plan for disposal procedures.)

4.6 Environmental Monitoring

An employee's exposure to a chemical must be assessed through monitoring if there is reason to believe that a hazard exists or may develop in the workplace.

Initial Monitoring

The laboratory teacher shall contact the Chemical Hygiene Officer to initiate environmental monitoring when:

- A laboratory employee or student exhibits signs or symptoms of overexposure to a chemical used in the lab; or,
- There is reason to believe that the level of employee/student exposure to a hazardous chemical exceeds the OSHA "action level" or permissible exposure level (PEL).

Periodic Monitoring

If the initial monitoring indicates a problem, the Chemical Hygiene Officer will make recommendations for corrective actions or alternative procedures. Each department supervisor and laboratory teacher is responsible for ensuring that the recommended corrective actions are followed. Additional monitoring will be conducted if necessary in order to establish the effectiveness of the corrective actions and periodically thereafter as specified by the particular standard involved.

Employee Notification

The employee must be notified in writing by his/her supervisor of the outcome of any laboratory environmental monitoring within 15 days of the receipt of those results.

4.7 Waste Disposal

- Sites shall seek to minimize the generation of hazardous waste by:
 - Purchasing and maintaining smaller quantities of chemicals.
 - Seeking to transfer unneeded or excess chemical stock to other site or facility which may have a legitimate use.
- Hazardous wastes can be accumulated on-site for as long as six-months, provided on-site accumulation poses no immediate safety hazard.
- Store hazardous waste in closed containers clearly labeled with contents and marked "WASTE."
- Do not mix hazardous wastes.
- Document date accumulation of hazardous waste was started on container.
- When ready for disposal, contact the Central Office to arrange for transport.
- Call 1-866-school-0 if you should require assistance or additional information.
4.8 Housekeeping, Maintenance and Inspections

In order to ensure that overall safety is being maintained in district labs, a program of inspections and maintenance is conducted throughout all laboratories in the district. Inspections consist of formal reviews of chemical and general safety practices, housekeeping, and maintenance checks of safety-related equipment. Documentation of inspections is maintained by each laboratory or department. Inspections and associated maintenance (if appropriate) include but may not be limited to the following:

- Chemical and general safety practices, housekeeping.
- Personal protective equipment.
- Eyewash fountains.
- Emergency showers.
- Fume hoods.
- Fire extinguishers.
- First aid supplies.

4.9 Student Laboratory Safety Contract

The district recognizes the need to convey the safety expectations of this chemical hygiene program, and the district chemical safety and use procedures, to the students involved in laboratory activities. The district believes that safety in the science classroom requires a commitment to safety by students, teachers, and parents. Therefore, the district has developed a student laboratory safety contract defining the safety rules and procedures that students must follow at all times while in the laboratory.

At the beginning of each school year or term as appropriate, students involved in laboratory activities will be required to sign the district student laboratory safety contract, agreeing to follow all the safety rules set forth in the contract. The contract must also be signed by a parent or guardian of the student before the student can participate in laboratory activities.

Two copies of the contract will be given to each student. The first copy will be returned to the laboratory teacher and the second will be kept by the student in his/her science notebook as a constant reminder of the safety rules.

5.0 TRAINING

Prior to or shortly after starting work at the district, laboratory employees are required to take the district online Chemical Safety and Laboratory Safety courses (in addition to the required training under the district Hazard Communication program). This training includes, but is not limited to:

- Content of the OSHA Lab Safety Standard.
- Location and availability of this Chemical Hygiene Program.
- Methods to detect the presence or release of chemicals.
- The physical and health hazards of chemicals in the work area.
- The measures which employees/students can take to protect themselves from these hazards including Standard Operating Procedures, control measures, personal protective equipment and emergency procedures.
Every year thereafter, laboratory employees are required to take the district online Laboratory Safety course and will be periodically reminded via Safety Notices of key safety precautions and responsibilities. If an employee uses a hazardous material without proper training, it is the employee’s responsibility to inform the employer so that proper training can be given.

6.0 RECORDKEEPING

Records of all employee training will be maintained either electronically or on paper. These records will include the name of the employee, the subject of the training, and the date and time the training was completed. These training records will be retained by the district.